

Parametric Insurance or Agro Sector in Ukraine

Presentation of AXA Global Parametrics

AXA Group's parametric insurance center of expertise

- Ambitious goal to come-up with innovative solutions to mitigate the consequences of climate change...
- and solve several pain points in P&C insurance (e.g. delays, affordability, complexity)
- Clients include corporations but also governments, international institutions, SMEs or individuals
- Global scope already active on 5 continents and over 40 countries
- Many indexes possible including rainfall, temperature, crop yield, wind speed, wave height, and more
- Index based on the newest technology including satellite imagery

Parametric Insurance: A new approach!

The Fundamentals based on three pillars

Parametric insurance is based on the use of an index to calculate the amount of compensation.

How does it work?

The pay-out modelling aims to closely mirror to the client's actual damages or financial losses to the chosen index.

QTransparent

Since the payment amount is fixed in advance, it enables a much faster payment as no loss adjusters is required.

 Σ Faster

What data do we usually use in our contracts?

Weather stations, satellite imagery, and many others

- Weather stations can be used for parametric insurance contracts cover against named perils derived from climate:
 - Rainfall (Drought, Flash Flood, Excess of rain)
 - Temperature (Frost, Heat wave)
 - Wind (Hurricane)
- **Index** based on official statistics and data. It allows to cover against all aggregated perils in a given risk peiod affecting for exemple:
 - Yield (all perils in a crop year affecting yield)
 - Quality (Hagberg, protein content, Sugar content)
 - Delays
- If weather stations are not reliable enough (low density, no historical data..) and there are no database, it is possible to use **Satellites** and measure weather parameters ...
 - RFE (Rain Fall Estimate)
 - Drought index (evapotranspiration)
 - Vegetation index (NDVI)

Building a parametric cover

Key features and Methodology:

- Index based cover is an insurance product based on an reference index:
 - Structured based on third party official yield data
 - © Clients can choose all parameters to set the structure: deductible, limit, maximum payout; benchmark yields
 - Pricing and settlement based on statistics. No additional proof of loss or farm visits are needed to verify the crop situation
 - Only three exclusions: war, terrorism, nuclear accident
- Pricing is based on statistical occurrence.
 - Estimated payoff: Burning cost on Line: 2.25 full payouts in 23 Years ▶ 2.25/23 = 9,78%

Case Study: Yield Index Cover for Grain Agro-holding

Area Yield Index Illustration of Area Yield Index

Illustration:

Benchmark = 5 year average (2012-2016) = 8,4 Mt/ha

Area Yield Index

- Area yield index based solution is used to cover against a decrease in production due to any adverse weather conditions using the historical yield as reference for the specific area to be insured.
- Area Yield index gives thus a good indication for the trend in a given area suffering from extreme-macro-events in heterogenous geographies (Drought, Extreme frost; Heat Wave) or abnormal weather pattern changes in homogenous geographies.

Insurance rationale:

- Possible to obtain statistics at the county level in Ukraine hence at the very granular level limiting basis risk.
- What is important is not the yield but the Year on Year on variation i.e. if the yields of the client are higher than the area/region, it is not underinsured since we first calculate the % drop in yields in the respective area/region, and then apply this drop to the higher expected yield of our client.

Claims settlement

- → Calculation of net indemnity following the publication of results
- → Possibility of down payment after semi-definitive results

Best use for:

- → Homogenous area
- → The smaller the reference, the closer the index

Area Yield Crop Insurance

Ukraine administrative cut and yield trend for crops

Building a parametric cover

Structuring: Individual vs portfolio

INDIVIDUAL APPROACH

- Cover separately each risk within each region e.g. wheat in region B.
- Full cover

GEOGRAPHICAL PORTFOLIO

- Cover all risk in a given area, wheat and sunflower in region B
- Risk type diversification : Crop types can compensate against each other

RISK TYPE PORTFOLIO

- Insure all risk type accross region e.g. Corn in the region A, B and C
- Spatial diversification: Region an can compensate against each other

Region C

· 30,000

15%

Market production

Client's Market Share

10,000

Administrative cut:

- Ukraine is 603,628 km2
- 24 regions/oblast
- 476 raions

9 1

1 raion is in average = 1,200km2 (or a square of 30*40km) = 120,000ha

Area Yield Crop Insurance

A tailored made structure

Elements to communicate to the insurer:

	Selected Region	Oblast X	Raion Y	Oblast X	Raion Y
ter	Selected crop:	Winter Wheat	Spring Barley	Corn	Sunflower
rime	Surface (Ha) by region	500	850	750	600
ed p	Official yield reference (Mt/ha)	5,14	3,55	6,13	2,42
sure	Client yield forecast (MT/Ha)	2,4	4,5	6,21	3
Ë	Insured margin (USD/MT)	140	260	300	500
	Capital insured (USD)	1 944 000	1 759 500	450 000	900 000

4	Options	Option 1	Option 2	Option 3
ture	Deductible [% below ref]	10%	15%	20%
Structure	Exit [% below ref]	40%	45%	50%
	Limit [\$]			

Case Study of index based yield insurance Case for Spring and winter crop in Pavlograd

Case Study: Drought cover

Weather Index

Key features

Weather index:

- Weather events offers cover against weather events such as drought, strong winds, flashfloods, excess heat or excess rainfall can impact production quantity or crop quality.
- Structure needs to be adapted to the plant climatic sensitivity

Methodology

- Weather index is structured purely using certain weather parameters as recorded by a weather station.
- Pay out is triggered when a certain weather parameter exceeds its pre-agreed level. It does not take into account actual crop losses thus creating a certain basis risk
- Clients can choose a tailor-made structure (trigger, risk periods) that best meets their needs
- Settlement is based on third-party weather station data or satellite data, no additional proof of loss or farm visits are needed to verify the crop situation

Example , phenologic stage of winter wheat

Weather based insurance

Drought cover for winter and spring crops in the Luhansk oblast

Thee stations are available in the region:

Name	Lat	Long	Alt	Weight
Bogucar	49.933	40.567	83	33,33%
Izium	49.183	37.300	77	33,33%
Luhans'K	46.433	30.767	42	33.33%

Weather Index

Drought cover- Crop Season

Identified Risk

- Crop water need during the initial stage is estimated at 50 percent of the crop water need during the mid season stage
- During the crop development stage the crop water need gradually increases from 50% of the maximum crop water need to the maximum crop water need.

Illustration: Cumulated Rainfall April - August

Insurance rational

[7]

- During the risk period, we sum rainfall measured at the station
- If total cumulated rainfall are below the trigger, the insurance starts paying.

Insurance cover				
Insured Risk	Drought			
Index Type	Daily cumulated rainfall (Daily rainfall above 20mm are not counted)			
Reference Weather Station	Combined Weather Station			
Insured location	Luhansk oblast, Ukraine			
Risk period	April 15 th to August 31 st , 2018			
Trigger	Cumulated rainfall < 135mm			
Exit	Cumulated rainfall = 35mm			
Tick	Linear with EUR 40,000 per mm			
Limit	EUR 4,0000,000			

Weather based insurance

Drought cover for winter and spring crops in the Odessa oblast

Thee stations are available in the region:

Name	Lat	Long	Alt	Weight
Liubashivk	47.850 0	30.2667	181 m	68%
Odesa	46.433	30.767	42	32%

Monitoring during risk period and Year Comparison

Weather based insurance – Drought during sowing time

Drought cover for winter and spring crops in the Zaporizhia oblast

Thee stations are available in the region:

Name	Lat	Long	Alt	Weight
Kherson	46.633	32.567	47	14%
Mariupol	47.033	37.500	68	37%
Zaporizhzhia	47.800	35.017	107	49%

Weather Index

Drought cover- Short Drought (Ideal for sowing time)

Identified Risk

- Crop water need during the initial stage is estimated at 50 percent of the crop water need during the mid season stage
- During the crop development stage the crop water need gradually increases from 50% of the maximum crop water need to the maximum crop water need.

Insurance rational

- During the risk period, we sum rainfall measured at the station.
- If total cumulated rainfall are below the trigger, the insurance starts paying.

Ins	urance cover		
Insured Risk Short Period Drought – Sowing time			
Index Type	60 days period cumulated rainfall (Daily rainfall below 5mm - above 20mm are not counted)		
Reference Weather Station	Combined Weather Station		
Insured location	Zaporizhia oblast, Ukraine		
Risk period	April 15th to June 30th, 2018		
Trigger	Cumulated rainfall on 60 days < 15mm		
Exit	Cumulated rainfall on 60 days =0mm		
Tick	Linear with EUR 1,000,000 per mm		
Limit	EUR 15,000,000		

Weather based insurance – Drought during sowing time

Drought cover for winter and spring crops in the Shepetivka and KhmelnytsKy oblast

Thee stations are available in the region:

Name	Lat	Long	Alt	Weight
Chernovsty	48.367	25.900	242	9%
Khmelnytsky	49.433	26.983	350	32,44%
Mohyliv-Podilsky	48.450	27.783	77	18,61%
Shepetivka	50.167	27.033	277	39,69%

Weather Index

Drought cover- Short Drought

Identified Risk

- Crop water need during the initial stage is estimated at 50 percent of the crop water need during the mid season stage
- During the crop development stage the crop water need gradually increases from 50% of the maximum crop water need to the maximum crop water need.

Insurance rational

- During the risk period, we sum rainfall measured at the station.
- If total cumulated rainfall are below the trigger, the insurance starts paying.

90 80 70 60 50 40 30 20 10 0 2011 2012 2013 2014 2015 2016 2017 2018

Cumulated Rainfall - 60 days Window

Insurance cover				
Insured Risk	Short Period Drought			
Index Type	60 days period cumulated rainfall (Daily rainfall below 5mm - above 20mm are not counted)			
Reference Weather Station	Combined Weather Station			
Insured location	Shepetivka and KhmelnytsKy oblast, Ukraine			
Risk period	April 15 th to August 31 st , 2018			
Trigger	Cumulated rainfall on 60 days < 25mm			
Exit	Cumulated rainfall on 60 days =0mm			
Tick	Linear with EUR 40,000 per mm			
Limit	EUR 1,200,000			

Remote Sensing

Soil Moisture

- Detailed information on vulnerable water resources
- Predictor for vegetation growth, floods and droughts
- Improvement of weather forecast
- Technical Specification:

0.5

0.4

0 [m3/m3]

- Most reliable system for soil moisture monitoring (ESA/NASA)
- Systems sensitive to moisture content of first 10 cm of the soil

100

200

300

- (Sub) daily observations, all weather proof (no problems with clouds)
- Global coverage, 40 years of data
- Scientific soil moisture retrieval algorithm

Fabien BERCIAUD

Senior business developer

AXA | Global Parametrics

Fabien.berciaud@axa.com

Tel: +33 1 56 43 81 06